Autoregressive models of amplitude modulations in audio compression

  • Authors:
  • Sriram Ganapathy;Petr Motlicek;Hynek Hermansky

  • Affiliations:
  • Electrical and Computer Engineering Department, The Johns Hopkins University, Baltimore, MD;Idiap Research Institute, Martigny, Switzerland;Electrical and Computer Engineering Department, The Johns Hopkins University, Baltimore, MD

  • Venue:
  • IEEE Transactions on Audio, Speech, and Language Processing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a scalable medium bit-rate wide-band audio coding technique based on frequency-domain linear prediction (FDLP). FDLP is an efficient method for representing the long-term amplitude modulations of speech/audio signals using autoregressive models. For the proposed audio codec, relatively long temporal segments (1000 ms) of the input audio signal are decomposed into a set of critically sampled sub-bands using a quadrature mirror filter (QMF) bank. The technique of FDLP is applied on each sub-band to model the sub-band temporal envelopes. The residual of the linear prediction, which represents the frequency modulations in the sub-band signal, are encoded and transmitted along with the envelope parameters. These steps are reversed at the decoder to reconstruct the signal. The proposed codec utilizes a simple signal independent nonadaptive compression mechanism for a wide class of speech and audio signals. The subjective and objective quality evaluations show that the reconstruction signal quality for the proposed FDLP codec compares well with the state-of-the-art audio codecs in the 32-64 kbps range.