From spectrum pooling to space pooling: opportunistic interference alignment in MIMO cognitive networks

  • Authors:
  • Samir M. Perlaza;Nadia Fawaz;Samson Lasaulce;Merouane Debbah

  • Affiliations:
  • Orange Labs, France Telecom R&D, Issy les Moulineaux, Cedex 9, France;Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA;LSS, CNRS-SUPELEC-Paris Sud, Gif-sur-Yvette, Cedex, France;SUPELEC, Gif-sur-Yvette, Cedex, France

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 2010

Quantified Score

Hi-index 35.68

Visualization

Abstract

We describe a noncooperative interference alignment (IA) technique which allows an opportunistic multiple input multiple output (MIMO) link (secondary) to harmlessly coexist with another MIMO link (primary) in the same frequency band. Assuming perfect channel knowledge at the primary receiver and transmitter, capacity is achieved by transmiting along the spatial directions (SD) associated with the singular values of its channel matrix using a water-filling power allocation (PA) scheme. Often, power limitations lead the primary transmitter to leave some of its SD unused. Here, it is shown that the opportunistic link can transmit its own data if it is possible to align the interference produced on the primary link with such unused SDs.We provide both a processing scheme to perform IA and a PA scheme which maximizes the transmission rate of the opportunistic link. The asymptotes of the achievable transmission rates of the opportunistic link are obtained in the regime of large numbers of antennas. Using this result, it is demonstrated that depending on the signal-to-noise ratio and the number of transmit and receive antennas of the primary and opportunistic links, both systems can achieve transmission rates of the same order.