Anytime problem solving using dynamic programming

  • Authors:
  • Mark Boddy

  • Affiliations:
  • Honeywell Systems and Research Center, Minneapolis, MN

  • Venue:
  • AAAI'91 Proceedings of the ninth National conference on Artificial intelligence - Volume 2
  • Year:
  • 1991

Quantified Score

Hi-index 0.00

Visualization

Abstract

In previous work, we have advocated explicitly scheduling computation time for planning and problem solving (deliberation) using a framework called expectation-driven iterative refinement. Within this framework, we have explored the problem of allocating deliberation time when the procedures used for deliberation implement anytime algorithms: algorithms that return some answer for any allocation of time. In our search for useful techniques for constructing anytime algorithms, we have discovered that dynamic programming shows considerable promise for the construction of anytime algorithms for a wide variety of problems. In this paper, we show how dynamic programming techniques can be used to construct useful anytime procedures for two problems: multiplying sequences of matrices, and the Travelling Salesman Problem. Dynamic programming can be applied to a wide variety of optimization and control problems, many of them relevant to current AI research (e.g., scheduling, probabilistic reasoning, and controlling machinery). Being able to solve these kinds of problems using anytime procedures increases the range of problems to which expectation-driven iterative refinement can be applied.