Learning relations by pathfinding

  • Authors:
  • Bradley L. Richards;Raymond J. Mooney

  • Affiliations:
  • Dept. of Computer Sciences, University of Texas at Austin, Austin, Texas;Dept. of Computer Sciences, University of Texas, Austin, Austin, Texas

  • Venue:
  • AAAI'92 Proceedings of the tenth national conference on Artificial intelligence
  • Year:
  • 1992

Quantified Score

Hi-index 0.00

Visualization

Abstract

First-order learning systems (e.g., FOIL, FOCL, FORTE) generally rely on hill-climbing heuristics in order to avoid the combinatorial explosion inherent in learning first-order concepts. However, hill-climbing leaves these systems vulnerable to local maxima and local plateaus. We present a method, called relational pathfinding, which has proven highly effective in escaping local maxima and crossing local plateaus. We present our algorithm and provide learning results in two domains: family relationships and qualitative model building.