Random testing for higher-order, stateful programs

  • Authors:
  • Casey Klein;Matthew Flatt;Robert Bruce Findler

  • Affiliations:
  • Northwestern University, Evanston, IL, USA;University of Utah, Salt Lake City, UT, USA;Northwestern University, Evanston, IL, USA

  • Venue:
  • Proceedings of the ACM international conference on Object oriented programming systems languages and applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Testing is among the most effective tools available for finding bugs. Still, we know of no automatic technique for generating test cases that expose bugs involving a combination of mutable state and callbacks, even though objects and method overriding set up exactly that combination. For such cases, a test generator must create callbacks or subclasses that aggressively exercise side-effecting operations using combinations of generated objects. This paper presents a new algorithm for randomly testing programs that use state and callbacks. Our algorithm exploits a combination of contracts and environment bindings to guide the test-case generator toward interesting inputs. Our prototype implementation for Racket (formerly PLT Scheme) - which has a Java-like class system, but with first-class classes as well as gbeta-like augmentable methods - uncovered dozens of bugs in a well-tested and widely used text-editor library. We describe our approach in a precise, formal notation, borrowing the techniques used to describe operational semantics and type systems. The formalism enables us to provide a compact and self-contained explanation of the core of our technique without the ambiguity usually present in pseudo-code descriptions.