Indexing large-scale raster geospatial data using massively parallel GPGPU computing

  • Authors:
  • Jianting Zhang;Simin You;Le Gruenwald

  • Affiliations:
  • City College of New York, New York City, NY;CUNY Graduate Center, New York, NY;University of Oklahoma, Norman, OK

  • Venue:
  • Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Advances in geospatial technologies have generated large amounts of raster geospatial data. Massively parallel General Purpose Graphics Processing Unit (GPGPU) computing technologies have provided personal computers with tremendous computing capabilities. In this paper, we report our work on fast indexing of large-scale raster geospatial data using GPGPU computing. We have designed a cache conscious quadtree data structure (CCQ-Tree) that is suitable for GPU indexing. A set of algorithms have been developed and integrated to construct CCQ-Trees on GPUs by utilizing multiple pyramid data structures and Z-order based prefix sum. Experiments on multiple 4096*4096 blocks of a global precipitation raster data have shown that CCQ-Tree indexing using a 112-core Nvidia Quadro FX3700 GPU device reduces construction times from around 9.83 seconds to 0.42 seconds (23X speedup).