A distributed topological camera network representation for tracking applications

  • Authors:
  • Edgar Lobaton;Ramanarayan Vasudevan;Ruzena Bajcsy;Shankar Sastry

  • Affiliations:
  • Department of Computer Science, University of North Carolina at Chapel Hill, NC;Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA;Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA;Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA

  • Venue:
  • IEEE Transactions on Image Processing - Special section on distributed camera networks: sensing, processing, communication, and implementation
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Sensor networks have been widely used for surveillance, monitoring, and tracking. Camera networks, in particular, provide a large amount of information that has traditionally been processed in a centralized manner employing a priori knowledge of camera location and of the physical layout of the environment. Unfortunately, these conventional requirements are far too demanding for ad-hoc distributed networks. In this article, we present a simplicial representation of a camera network called the camera network complex (CN-complex), that accurately captures topological information about the visual coverage of the network. This representation provides a coordinate-free calibration of the sensor network and demands no localization of the cameras or objects in the environment. A distributed, robust algorithm, validated via two experimental setups, is presented for the construction of the representation using only binary detection information. We demonstrate the utility of this representation in capturing holes in the coverage, performing tracking of agents, and identifying homotopic paths.