A holistic approach to the integration of safety applications: the INSAFES subproject within the European framework programme 6 integrating project PReVENT

  • Authors:
  • Angelos Amditis;Enrico Bertolazzi;Matthaios Bimpas;Francesco Biral;Paolo Bosetti;Mauro Da Lio;Lars Danielsson;Alessandro Gallione;Henrik Lind;Andrea Saroldi;Agneta Sjögren

  • Affiliations:
  • Department of Electrical and Computer Engineering and the Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece;Department of Mechanical and Structural Engineering, University of Trento, Trento, Italy;Department of Electrical and Computer Engineering and the Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece;Department of Mechanical and Structural Engineering, University of Trento, Trento, Italy;Department of Mechanical and Structural Engineering, University of Trento, Trento, Italy;Department of Mechanical and Structural Engineering, University of Trento, Trento, Italy;Active Safety Electronics Department, Volvo Car Corporation, Göteborg, Sweden;Fiat Group Automobiles, Torino, Italy and Centro Ricerche Fiat, Orbassano, Italy;Active Safety Electronics Department, Volvo Car Corporation, Göteborg, Sweden;Centro Ricerche Fiat, Orbassano, Italy;Intelligent Vehicle Technologies Department, Volvo Technology Corporation, Göteborg, Sweden

  • Venue:
  • IEEE Transactions on Intelligent Transportation Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper deals with the integration of multiple advanced driver-assistance systems (ADAS) and in-vehicle information systems (IVIS) in a holistic driver-support system. The paper presents the results of a project named Integrated Safety Systems (INSAFES), which was part of PReVENT: an integrating project carried out under the European Framework Programme 6. Integration in INSAFES is tackled at three different levels in the framework of a "cognitive car" perspective: 1) at the perception level, to represent the world around the vehicle, including object-tracking between sensor fields and the detection of driver intentions; 2) at the decision level, to reproduce humanlike holistic motion plans, which serve as "reference maneuvers" to evaluate the motion alternatives that a driver faces; and 3) at the level of interaction with the driver and vehicle control (action level), to arbitrate between the requests of functions competing for driver attention. A function that provides simultaneous longitudinal and lateral support has been developed. It gives support for safe speed, safe distance, lane change, and all-around collision avoidance all at the same time. At its core, there is a tool (evasive/reference maneuver) that constantly evaluates two possible alternatives (in lane and evasive/lane change) and compares them with the driver input to detect which one applies, which dictates warnings and driver interactions, and whether there is a better alternative. In addition, a "warning manager" has been developed, acting like a referee who lets the ADAS applications work standalone and then combines the requests of each application, prioritizes them, and manages the interaction with the user. The warning manager can be particularly useful in the case of integration of pre-existing standalone functions, which can be quickly reused. If a holistic ADAS is developed, the warning manager can still be used to combine it with IVIS functions. In fact, depending on the kind of ADAS and IVIS considered, the most suitable approach can be either to combine functions in a unified multifunctional driver-support application or to arbitrate between them through the warning manager.