Predicting energy and performance overhead of real-time operating systems

  • Authors:
  • Sandro Penolazzi;Ingo Sander;Ahmed Hemani

  • Affiliations:
  • School of ICT, KTH, Stockholm, Sweden;School of ICT, KTH, Stockholm, Sweden;School of ICT, KTH, Stockholm, Sweden

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a high-level method for rapidly and accurately estimating energy and performance overhead of Real-Time Operating Systems. Unlike most other approaches, which rely on Transaction-Level Modeling (TLM), we infer the information we need directly from executing the algorithmic specification, without needing to build any high-level architectural model. We distinguish two main components in our approach: first, an accurate one-time pre-characterization of the main RTOS functionalities in terms of energy and cycles; second, the development of an algorithm to rapidly predict the occurrences of such RTOS functionalities. Finally, we demonstrate the feasibility of our approach by comparing it against gate level for accuracy and against TLM for speed. We obtain a worst-case energy error of 12% against a mean speedup of 36X.