Exploiting sequential relationships for familial classification

  • Authors:
  • Lee S. Jensen;James G. Shanahan

  • Affiliations:
  • Ancestry.com, Provo, UT, USA;Church and Duncan Group Inc., San Francisco, CA, USA

  • Venue:
  • CIKM '10 Proceedings of the 19th ACM international conference on Information and knowledge management
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The pervasive nature of the internet has caused a significant transformation in the field of genealogical research. This has impacted not only how research is conducted, but has also dramatically increased the number of people discovering their family history. Recent market research (Maritz Marketing 2000, Harris Interactive 2009) indicates that general interest in the United States has increased from 45% in 1996, to 60% in 2000, and 87% in 2009. Increased popularity has caused a dramatic need for improvements in algorithms related to extracting, accessing, and processing genealogical data for use in building family trees. This paper presents one approach to algorithmic improvement in the family history domain, where we infer the familial relationships of households found in human transcribed United States census data. By applying advances made in natural language processing, exploiting the sequential nature of the census, and using state of the art machine learning algorithms, we were able to decrease the error by 35% over a hand coded baseline system. The resulting system is immediately applicable to hundreds of millions of other genealogical records where families are represented, but the familial relationships are missing.