An LQP-based descent method for structured monotone variational inequalities

  • Authors:
  • Min Li;Weijun Zhong

  • Affiliations:
  • -;-

  • Venue:
  • Journal of Computational and Applied Mathematics
  • Year:
  • 2011

Quantified Score

Hi-index 7.29

Visualization

Abstract

This paper proposes a descent method to solve a class of structured monotone variational inequalities. The descent directions are constructed from the iterates generated by a prediction-correction method [B.S. He, Y. Xu, X.M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities, Comput. Optim. Appl. 35 (2006) 19-46], which is based on the logarithmic-quadratic proximal method. In addition, the optimal step-sizes along these descent directions are identified to accelerate the convergence of the new method. Finally, some numerical results for solving traffic equilibrium problems are reported.