New algorithms for barrier coverage with mobile sensors

  • Authors:
  • Xuehou Tan;Gangshan Wu

  • Affiliations:
  • Tokai University, Hiratsuka, Japan;State Key Lab. for Novel Software Technology, Nanjing University, China

  • Venue:
  • FAW'10 Proceedings of the 4th international conference on Frontiers in algorithmics
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Monitoring and surveillance are important aspects in modern wireless sensor networks. In applications of wireless sensor networks, it often asks for the sensors to quickly move from the interior of a specified region to the region's perimeter, so as to form a barrier coverage of the region. The region is usually given as a simple polygon or even a circle. In comparison with the traditional concept of full area coverage, barrier coverage requires fewer sensors for detecting intruders, and can thus be considered as a good approximation of full area coverage. In this paper, we present an O(n2.5 log n) time algorithm for moving n sensors to the perimeter of the given circle such that the new positions of sensors form a regular n-gon and the maximum of the distances travelled by mobile sensors is minimized. This greatly improves upon the previous time bound O(n3.5 log n). Also, we describe an O(n4) time algorithm for moving n sensors, whose initial positions are on the perimeter of the circle, to form a regular n-gon such that the sum of the travelled distances is minimized. This solves an open problem posed in [2]. Moreover, our algorithms are simpler and have more explicit geometric flavor.