Fuzzy logic controller for maximum power tracking in PMSG-based wind power systems

  • Authors:
  • Quoc-Nam Trinh;Hong-Hee Lee

  • Affiliations:
  • School of Electrical Engineering, University of Ulsan, Ulsan, Korea;School of Electrical Engineering, University of Ulsan, Ulsan, Korea

  • Venue:
  • ICIC'10 Proceedings of the Advanced intelligent computing theories and applications, and 6th international conference on Intelligent computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a novel maximum power point tracking (MPPT) for a permanent magnet synchronous generator (PMSG) wind power system is proposed using a fuzzy logic algorithm. The proposed fuzzy logic controller (FLC) adopts a conventional hill climb searching (HCS) method, which is commonly used for extracting the maximum wind power due to its simplicity. The inputs of FLC are derivations of DC output power and DC/DC converter duty cycle step change, and the output of FLC is DC/DC converter duty cycle. The main advantage of the proposed MPPT method is no need to measure wind velocity and generator speed. As such, the control algorithm is independent on turbine characteristics, achieving the fast dynamic responses with non linear fuzzy logic systems. The effectiveness of the proposed MPPT strategy has been verified by simulation and experiment.