Interval wavelength assignment in all-optical star networks

  • Authors:
  • Robert Janczewski;Anna Małafiejska;Michał Małafiejski

  • Affiliations:
  • Gdańsk University of Technology, Algorithms and System Modeling Department, Poland;Gdańsk University of Technology, Algorithms and System Modeling Department, Poland;Gdańsk University of Technology, Algorithms and System Modeling Department, Poland

  • Venue:
  • PPAM'09 Proceedings of the 8th international conference on Parallel processing and applied mathematics: Part I
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the paper we consider a new problem of wavelength assigment for multicasts in the optical star networks. We are given a star network in which nodes from a set V are connected to the central node with optical fibres. The central node redirects the incoming signal from a single node on a particular wavelength from a given set of wavelengths to some of the other nodes. The aim is to minimize the total number of used wavelengths, which means that the overall cost of the transmission is minimized (i.e. wavelength conversion or optoelectronic conversion is minimized). This problem can be modelled by a p-fiber coloring of some labelled digraph, where colors assigned to arcs of the digraph correspond to the wavelengths. In the paper we assume the set of all wavelengths of the incoming signals to a particular node forms an interval, i.e. a consecutive set of numbers. We analysed the problem of one-multicast transmission (per node). We constructed polynomial time algorithms for some special classes of graphs: complete k-partite graphs, trees and sub-cubic bipartite graphs.