The design of an active structural vibration reduction system using a modified particle swarm optimization

  • Authors:
  • Adam Schmidt

  • Affiliations:
  • Institute of Control and Information Engineering, Poznan University of Technology, Poznan, Poland

  • Venue:
  • ANTS'10 Proceedings of the 7th international conference on Swarm intelligence
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents the synthesis of an active control system using a modified particle swarm optimization method. The system's controller design is analyzed as a minimalization of the building stories' acceleration. The proposed fitness function is computationally efficient and incorporates the constraints on the system's stability and the maximum output of actuators. In order to handle the constraints the PSO was modified to take into account the particles' distance to the best and the worst solutions. The performance of the obtained controller was tested using historical earthquake records. The performed numerical simulations proved that the designed controller is capable of efficient vibrations reduction.