Semi-supervised learning of sparse linear models in mass spectral imaging

  • Authors:
  • Fabian Ojeda;Marco Signoretto;Raf Van De Plas;Etienne Waelkens;Bart De Moor;Johan A. K. Suykens

  • Affiliations:
  • ESAT, SCD, SISTA, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium;ESAT, SCD, SISTA, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium;ESAT, SCD, SISTA, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium and ProMeta, Interfaculty Centre for Proteomics and Metabolomics, Katholieke Universiteit Le ...;Laboratory for Phosphoproteomics, Katholieke Universiteit Leuven, Leuven, Belgium and ProMeta, Interfaculty Centre for Proteomics and Metabolomics, Katholieke Universiteit Leuven, Leuven, Belgium;ESAT, SCD, SISTA, Department of Electrical Engineering, Katholieke Universiteit Leuven,Leuven, Belgium and ProMeta, Interfaculty Centre for Proteomics and Metabolomics, Katholieke Universiteit Leu ...;ESAT, SCD, SISTA, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium

  • Venue:
  • PRIB'10 Proceedings of the 5th IAPR international conference on Pattern recognition in bioinformatics
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an approach to learn predictive models and perform variable selection by incorporating structural information from Mass Spectral Imaging (MSI) data. We explore the use of a smooth quadratic penalty to model the natural ordering of the physical variables, that is the mass-to-charge (m/z) ratios. Thereby, estimated model parameters for nearby variables are enforced to smoothly vary. Similarly, to overcome the lack of labeled data we model the spatial proximity among spectra by means of a connectivity graph over the set of predicted labels. We explore the usefulness of this approach in a mouse brain MSI data set.