Detecting faint curved edges in noisy images

  • Authors:
  • Sharon Alpert;Meirav Galun;Boaz Nadler;Ronen Basri

  • Affiliations:
  • Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel;Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel;Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel;Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

  • Venue:
  • ECCV'10 Proceedings of the 11th European conference on Computer vision: Part IV
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

A fundamental question for edge detection is how faint an edge can be and still be detected. In this paper we offer a formalism to study this question and subsequently introduce a hierarchical edge detection algorithm designed to detect faint curved edges in noisy images. In our formalism we view edge detection as a search in a space of feasible curves, and derive expressions to characterize the behavior of the optimal detection threshold as a function of curve length and the combinatorics of the search space. We then present an algorithm that efficiently searches for edges through a very large set of curves by hierarchically constructing difference filters that match the curves traced by the sought edges. We demonstrate the utility of our algorithm in simulations and in applications to challenging real images.