Stochastic optimization of two-stage multi-item inventory system with hybrid genetic algorithm

  • Authors:
  • Yuli Zhang;Shiji Song;Cheng Wu;Wenjun Yin

  • Affiliations:
  • Department of Automation, Tsinghua University, Beijing;Department of Automation, Tsinghua University, Beijing;Department of Automation, Tsinghua University, Beijing;IBM China Research Lab, Beijing

  • Venue:
  • LSMS/ICSEE'10 Proceedings of the 2010 international conference on Life system modeling and simulation and intelligent computing, and 2010 international conference on Intelligent computing for sustainable energy and environment: Part II
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper considers a two-stage, multi-item inventory system with stochastic demand. First we propose two types of exact stochastic optimization models to minimize the long-run average system cost under installation and echelon (r, nQ) policy. Second we provide an effective hybrid genetic algorithm (HGA) based on the property of the optimization problem. In the proposed HGA, a heuristic search technique, based on the tradeoff between inventory cost and setup cost, is introduced. The long-run average cost of each solution in the model is estimated by Monte Carlo method. At last, computation tests indicate that when variance of stochastic demand increases, echelon policy outperforms installation policy and the proposed heuristic search technique greatly enhances the search capacity of HGA.