Total variation regularization in electrocardiographic mapping

  • Authors:
  • Guofa Shou;Ling Xia;Mingfeng Jiang

  • Affiliations:
  • Department of Biomedical Engineering, Zhejiang University, Hangzhou, P.R. China;Department of Biomedical Engineering, Zhejiang University, Hangzhou, P.R. China;The College of Electronics and Informatics, Zhejiang Sci-Tech University, Hangzhou, P.R. China

  • Venue:
  • LSMS/ICSEE'10 Proceedings of the 2010 international conference on Life system modeling and simulation and intelligent computing, and 2010 international conference on Intelligent computing for sustainable energy and environment: Part III
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Electrocardiographic mapping (ECGM) is to estimate the cardiac activities from the measured body surface potentials (BSPs), in which the epicardial potentials (EPs) is often reconstructed. One of the challenges in ECGM problem is its ill-posedness, and regularization techniques are needed to obtain the clinically reasonable solutions. The total variation (TV) method has been validated in keeping the sharp edges and has found some preliminary applications in ECG inverse problem. In this study, we applied and compared two algorithms: lagged diffusivity (LD) fixed point iteration and primal dual-interior point method (PD-IPM), to implement TV regularization method in ECGM problem. With a realistic heart-lung-torso model, the TV methods are tested and compared to the L2-norm regularization methods in zero- and first-order. The simulation results demonstrate that the TV method can generate better EPs compared to the zero-order Tikhonov method. Compared to the first-order Tikhonov method, the TV's results are much sharper. For the two algorithms in TV method, the LD algorithm seems more robust than the PD-IPM in ECGM problem, though the PD-IPM converges faster.