Ion channel modeling and simulation using hybrid functional Petri net

  • Authors:
  • Yin Tang;Fei Wang

  • Affiliations:
  • Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China;Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China

  • Venue:
  • LSMS/ICSEE'10 Proceedings of the 2010 international conference on Life system modeling and simulation and intelligent computing, and 2010 international conference on Intelligent computing for sustainable energy and environment: Part III
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Neural system and ion channels remain one of the most intractable issues in biology over years because of its complexity. A representation that takes in both the intuition of biologists and the computational ability of the ion channel system is of great importance. In this paper, we exploit Hybrid Functional Petri net (HFPN) for representing ion channel dynamics. As an extension of Petri net, HFPN allows both discrete and continuous factors and realizes ordinary differential equations (ODE) which make it easy to handle biological factors in the ion channel system such as the open(close) state of ion channels and the influx (efflux) of various ions. We prove that neural elements can be naturally translated into HFPN. Simulation results of the action potential show our model very effective. Our work explores a novel approach for neuroscience research and a new application for Petri-net based method.