Automatic revision of metabolic networks through logical analysis of experimental data

  • Authors:
  • Oliver Ray;Ken Whelan;Ross King

  • Affiliations:
  • University of Bristol, Bristol, UK;University of Aberystwyth, Ceredigion, UK;University of Aberystwyth, Ceredigion, UK

  • Venue:
  • ILP'09 Proceedings of the 19th international conference on Inductive logic programming
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a nonmonotonic ILP approach for the automatic revision of metabolic networks through the logical analysis of experimental data. The method extends previous work in two respects: by suggesting revisions that involve both the addition and removal of information; and by suggesting revisions that involve combinations of gene functions, enzyme inhibitions, and metabolic reactions. Our proposal is based on a new declarative model of metabolism expressed in a nonmonotonic logic programming formalism. With respect to this model, a mixture of abductive and inductive inference is used to compute a set of minimal revisions needed to make a given network consistent with some observed data. In this way, we describe how a reasoning system called XHAIL was able to correctly revise a state-of-the-art metabolic pathway in the light of real-world experimental data acquired by an autonomous laboratory platform called the Robot Scientist.