CLONAL-GP framework for artificial immune system inspired genetic programming for classification

  • Authors:
  • Hajira Jabeen;Abdul Rauf Baig

  • Affiliations:
  • National University of Computer and Emerging Sciences, Islamabad, Pakistan;National University of Computer and Emerging Sciences, Islamabad, Pakistan

  • Venue:
  • KES'10 Proceedings of the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part I
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a novel framework for artificial immune system (AIS) inspired evolution in Genetic Programming (GP). A typical GP system uses the reproduction operators mimicking the phenomena of natural evolution to search for efficient classifiers. The proposed framework uses AIS inspired clonal selection algorithm to evolve classifiers using GP. The clonal selection principle states that, in human immune system, high affinity cells that recognize the invading antigens are selected to proliferate. Furthermore, these cells undergo hyper mutation and receptor editing for maturation. In this paper, we propose a computational implementation of the clonal selection principle. The motivation for using non-Darwinian evolution includes avoidance of bloat, training time reduction and simpler classifiers. We have performed empirical analysis of proposed framework over a benchmark dataset from UCI repository. The CLONAL-GP is contrasted with two variants of GP based classification mechanisms and results are found encouraging.