Parallelisation of a simulation tool for casting and solidification processes on windows platforms

  • Authors:
  • Carsten Clauss;Silke Schuch;Rainer Finocchiaro;Stefan Lankes;Thomas Bemmerl

  • Affiliations:
  • RWTH Aachen University, Aachen, Germany;RWTH Aachen University, Aachen, Germany;RWTH Aachen University, Aachen, Germany;RWTH Aachen University, Aachen, Germany;RWTH Aachen University, Aachen, Germany

  • Venue:
  • IPDPS'06 Proceedings of the 20th international conference on Parallel and distributed processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Since the beginning of computational engineering, the numerical simulation of physical processes is an essential element in the area of high performance computing. Thus, also the domain of metal foundry demands the computational simulation of casting and solidification processes. A popular software tool for this purpose has been developed by the RWP GmbH in Roetgen, Germany. This tool, named WinCast, is a complete software suite, which contains modules for pre-, main- and post-processing of simulation data sets. A core module of WinCast is TFB, which determines the chronological temperature distribution of a casting process based on a finite-element-method and a Gauss-Seidel solver. With the increasing demand for even higher precision of the simulation results on one hand, and a growing need for even larger data sets on the other hand, the parallelisation of this module became inevitable. In this paper, we present our work accomplished to parallelise the solving algorithm of this module. We have chosen an MPI based master-slave approach for compute clusters by using a self-developed MPI library for Windows platforms.