Preserving source location privacy in monitoring-based wreless sensor networks

  • Authors:
  • Yong Xi;Loren Schwiebert;Weisong Shi

  • Affiliations:
  • Wayne State University, Department of Computer Science, Detroit, MI;Wayne State University, Department of Computer Science, Detroit, MI;Wayne State University, Department of Computer Science, Detroit, MI

  • Venue:
  • IPDPS'06 Proceedings of the 20th international conference on Parallel and distributed processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

While a wireless sensor network is deployed to monitor certain events and pinpoint their locations, the location information is intended only for legitimate users. However, an eavesdropper can monitor the traffic and deduce the approximate location of monitored objects in certain situations. We first describe a successful attack against the flooding-based phantom routing, proposed in the seminal work by Celal Ozturk, Yanyong Zhang, and Wade Trappe. Then, we propose GROW(GreedyRandomWalk), a two-way random walk, i.e., from both source and sink, to reduce the chance an eavesdropper can collect the location information. We improve the delivery rate by using local broadcasting and greedy forwarding. Privacy protection is verified under a backtracking attack model. The message delivery time is a little longer than that of the broadcasting-based approach, but it is still acceptable if we consider the enhanced privacy preserving capability of this new approach. At the same time, the energy consumption is less than half the energy consumption of flooding-base phantom routing, which is preferred in a low duty cycle, environmental monitoring sensor network.