Virtualizing Modern High-Speed Interconnection Networks with Performance and Scalability

  • Authors:
  • Bo Li;Zhigang Huo;Panyong Zhang;Dan Meng

  • Affiliations:
  • -;-;-;-

  • Venue:
  • CLUSTER '10 Proceedings of the 2010 IEEE International Conference on Cluster Computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

As one of the most important enabling technologies of cloud computing, virtualization brings to HPC good manageability, online system maintenance, performance isolation and fault isolation. Furthermore, previous study on VMM-bypass I/O that virtualizes OS-bypass networks (e.g. InfiniBand) relieved the worry of performance degradation coming along with virtualization. In this paper, we address the scalability challenges imposed upon OS-bypass networks under virtualized environments. The eXtended Reliable Connection (XRC) transport, proposed in modern high-speed interconnection networks to address the scalability problem in large scale applications, would not work in virtualized environments. To solve the problem, we propose VM-proof XRC design to eliminate the scalability gap between virtualized and native environments. Prototype evaluation shows that the virtualization of modern high-speed interconnection networks could get the same raw performance and scalability as in native non-virtualized environment with our VM-proof XRC design. The connection memory scalability shows a potential of 16 times improvement on virtualized clusters composed of 16-core nodes.