Approaching Optimality for Solving SDD Linear Systems

  • Authors:
  • Ioannis Koutis;Gary L. Miller;Richard Peng

  • Affiliations:
  • -;-;-

  • Venue:
  • FOCS '10 Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science
  • Year:
  • 2010

Quantified Score

Hi-index 0.03

Visualization

Abstract

We present an algorithm that on input of an $n$-vertex $m$-edge weighted graph $G$ and a value $k$, produces an {\em incremental sparsifier} $\hat{G}$ with $n-1 + m/k$ edges, such that the condition number of $G$ with $\hat{G}$ is bounded above by $\tilde{O}(k\log^2 n) $, with probability $1-p$. The algorithm runs in time $$\tilde{O}((m \log{n} + n\log^2{n})\log(1/p)).$$ As a result, we obtain an algorithm that on input of an $n\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$, computes a vector ${x}$ satisfying $| |{x}-A^{+}b| |_A