NET-FLi: on-the-fly compression, archiving and indexing of streaming network traffic

  • Authors:
  • Francesco Fusco;Marc Ph. Stoecklin;Michail Vlachos

  • Affiliations:
  • ETH Zurich, Switzerland;Ecole Polytechnique Fédérale de Lausanne (EPFL);IBM Research - Zurich

  • Venue:
  • Proceedings of the VLDB Endowment
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The ever-increasing number of intrusions in public and commercial networks has created the need for high-speed archival solutions that continuously store streaming network data to enable forensic analysis and auditing. However, "turning back the clock" for post-attack analyses is not a trivial task. The first major challenge is that the solution has to sustain data archiving under extremely high-speed insertion rates. Moreover, the archives created need to be stored in a format that is compressed but still amenable to indexing. The above requirements make general-purpose databases unsuitable for this task, and, thus, dedicated solutions are required. In this paper, we describe a prototype solution that satisfies all requirements for high-speed archival storage, indexing and data querying on network flow information. The superior performance of our approach is attributed to the on-the-fly compression and indexing scheme, which is based on compressed bitmap principles. Typical commercial solutions can currently process 20,000--60,000 flows per second. An evaluation of our prototype implementation on current commodity hardware using real-world traffic traces shows its ability to sustain insertion rates ranging from 500,000 to more than 1 million records per second. The system offers interactive query response times that enable administrators to perform complex analysis tasks on-the-fly. Our technique is directly amenable to parallel execution, allowing its application in domains that are challenged by large volumes of historical measurement data, such as network auditing, traffic behavior analysis and large-scale data visualization in service provider networks.