Graph indexing of road networks for shortest path queries with label restrictions

  • Authors:
  • Michael Rice;Vassilis J. Tsotras

  • Affiliations:
  • University of California, Riverside, CA;University of California, Riverside, CA

  • Venue:
  • Proceedings of the VLDB Endowment
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The current widespread use of location-based services and GPS technologies has revived interest in very fast and scalable shortest path queries. We introduce a new shortest path query type in which dynamic constraints may be placed on the allowable set of edges that can appear on a valid shortest path (e.g., dynamically restricting the type of roads or modes of travel which may be considered in a multimodal transportation network). We formalize this problem as a specific variant of formal language constrained shortest path problems, which we call the Kleene Language Constrained Shortest Paths problem. To efficiently support this type of dynamically constrained shortest path query for large-scale datasets, we extend the hierarchical graph indexing technique known as Contraction Hierarchies. Our experimental evaluation using the North American road network dataset (with over 50 million edges) shows an average query speed and search space improvement of over 3 orders of magnitude compared to the naïve adaptation of the standard Dijkstra's algorithm to support this query type. We also show an improvement of over 2 orders of magnitude compared to the only previously-existing indexing technique which could solve this problem without additional preprocessing.