Mobile data offloading: how much can WiFi deliver?

  • Authors:
  • Kyunghan Lee;Joohyun Lee;Yung Yi;Injong Rhee;Song Chong

  • Affiliations:
  • North Carolina State University, Raleigh, NC;KAIST, Daejeon, Korea;KAIST, Daejeon, Korea;North Carolina State University, Raleigh, NC;KAIST, Daejeon, Korea

  • Venue:
  • Proceedings of the 6th International COnference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a quantitative study on the performance of 3G mobile data offloading through WiFi networks. We recruited about 100 iPhone users from metropolitan areas and collected statistics on their WiFi connectivity during about a two and half week period in February 2010. Our trace-driven simulation using the acquired traces indicates that WiFi already offloads about 65% of the total mobile data traffic and saves 55% of battery power without using any delayed transmission. If data transfers can be delayed with some deadline until users enter a WiFi zone, substantial gains can be achieved only when the deadline is fairly larger than tens of minutes. With 100 second delays, the achievable gain is less than only 2--3%. But with 1 hour or longer deadline, traffic and energy saving gains increase beyond 29% and 20%, respectively. These results are in stark contrast to the substantial gain (20 to 33%) reported by the existing work even for 100 second delayed transmission using traces taken from transit buses or war-driving. The major performance difference comes from traces: while bus and war-driving traces contain much shorter connection and inter-connection times, our traces reflects the daily mobility patterns of average users more accurately.