A self-organizing localization reference grid

  • Authors:
  • Juergen Eckert;Felix Villanueva;Reinhard German;Falko Dressler

  • Affiliations:
  • University of Erlangen, Germany;University of Castilla-La Mancha, Spain;University of Erlangen, Germany;University of Erlangen, Germany

  • Venue:
  • ACM SIGMOBILE Mobile Computing and Communications Review
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a non-persistent localization system using a self-organizing reference grid of autonomous robot systems. The key idea is to continuously maintain accurate relative positions between the robots using an enhanced mass spring relaxation model. The robots estimate distances between neighboring systems using an ultrasonic system, measuring both the time of flight based distance and the angle between the systems. The algorithm then adapts the local position of the robot in the grid according to its neighbors. We developed a mass spring relaxation model allowing to maintain a completely self-organizing reference grid. In mass spring, newly arriving nodes can introduce oscillations and self-localization might fail or take a long time to converge. Therefore, we first use the available grid to localize the arriving system with reference to the grid before including the robot as a new reference point. Misplaced nodes are detected and corrected by our enhancements. In turn, the grid is able to provide accurate localization services, e.g. for flying robots.