Safe flocking in spite of actuator faults

  • Authors:
  • Taylor Johnson;Sayan Mitra

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL;University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • SSS'10 Proceedings of the 12th international conference on Stabilization, safety, and security of distributed systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The safe flocking problem requires a collection of N mobile agents to (a) converge to and maintain an equi-spaced lattice formation, (b) arrive at a destination, and (c) always maintain a minimum safe separation. Safe flocking in Euclidean spaces is a well-studied and difficult coordination problem. Motivated by real-world deployment of multi-agent systems, this paper studies onedimensional safe flocking, where agents are afflicted by actuator faults. An actuator fault is a new type of failure that causes an affected agent to be stuck moving with an arbitrary velocity. In this setting, first, a self-stabilizing solution for the problem is presented. This relies on a failure detector for actuator faults. Next, it is shown that certain actuator faults cannot be detected, while others may require O(N) time for detection. Finally, a simple failure detector that achieves the latter bound is presented. Several simulation results are presented for illustrating the effects of failures on the progress towards flocking.