Image-based respiratory motion compensation for fluoroscopic coronary roadmapping

  • Authors:
  • Ying Zhu;Yanghai Tsin;Hari Sundar;Frank Sauer

  • Affiliations:
  • Siemens Corporate Research, Princeton, NJ;Siemens Corporate Research, Princeton, NJ;Siemens Corporate Research, Princeton, NJ;Siemens Corporate Research, Princeton, NJ

  • Venue:
  • MICCAI'10 Proceedings of the 13th international conference on Medical image computing and computer-assisted intervention: Part III
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new image-based respiratory motion compensation method for coronary roadmapping in fluoroscopic images. A temporal analysis scheme is proposed to identify static structures in the image gradient domain. An extended Lucas-Kanade algorithm involving a weighted sum-of-squared-difference (WSSD) measure is proposed to estimate the soft tissue motion in the presence of static structures. A temporally compositional motion model is used to deal with large image motion incurred by deep breathing. Promising results have been shown in the experiments conducted on clinical data.