Generating cryptographically suitable non-linear maximum length cellular automata

  • Authors:
  • Sourav Das;Dipanwita Roy Chowdhury

  • Affiliations:
  • Dept. of CSE, Indian Institute of Technology, Kharagpur, India and Alcatel-Lucent India Limited, Bangalore, India;Dept. of CSE, Indian Institute of Technology, Kharagpur, India

  • Venue:
  • ACRI'10 Proceedings of the 9th international conference on Cellular automata for research and industry
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Non-linearity as well as randomness are essential for cryptographic applications. The Linear Cellular Automata (CA), particularly maximum length CA, are well known for generating excellent random sequences. However, till date, adequate research has not been done to generate maximal length Cellular Automata using non-linear rules; a fact that limits the application of CA in cryptography. This paper devices a method to generate non-linear Maximal Length Cellular Automata. It manipulates the number of clock cycles, based on inputs, in a maximum length additive CA and generates a series of non-linear boolean mappings. It shows that the bit streams generated in this manner are highly non-linear and pass all the statistical tests for randomness. These maximum length CA can be used as a non-linear primitive in cryptographic applications.