Network decontamination with temporal immunity by cellular automata

  • Authors:
  • Yassine Daadaa;Paola Flocchini;Nejib Zaguia

  • Affiliations:
  • SITE, University of Ottawa, Ottawa, ON, Canada;SITE, University of Ottawa, Ottawa, ON, Canada;SITE, University of Ottawa, Ottawa, ON, Canada

  • Venue:
  • ACRI'10 Proceedings of the 9th international conference on Cellular automata for research and industry
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Network decontamination (or disinfection) is a widely studied problem in distributed computing. Network sites are assumed to be contaminated (e.g., by a virus) and a team of agents is deployed to decontaminate the whole network. In the vast literature a variety of assumptions are made on the power of the agents, which can typically communicate, exchange information, remember the past, etc. In this paper we consider the problem in a much weaker setting; in fact we wish to describe the global disinfection process by a set of cellular automata local rules without the use of active agents. We consider the grid, which is naturally described by a 2-dimensional cellular automata, and we devise disinfection rules both in the common situation where after being disinfected a cell is prone to re-contamination by contact, and in a new setting where disinfection leaves the cells immune to recontamination for a certain amount of time (temporal immunity). We also distinguish between Von Neuman and Moore neighborhood, showing that, not surprisingly, a bigger neighborhood allows for a more efficient disinfection.