Low complexity MLSE equalization in highly dispersive Rayleigh fading channels

  • Authors:
  • H. C. Myburgh;J. C. Olivier

  • Affiliations:
  • Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa and CSIR, Pretoria, South Africa;Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa

  • Venue:
  • EURASIP Journal on Advances in Signal Processing - Special issue on advanced equalization techniques for wireless communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

A soft output low complexity maximum likelihood sequence estimation (MLSE) equalizer is proposed to equalize M-QAM signals in systems with extremely long memory. The computational complexity of the proposed equalizer is quadratic in the data block length and approximately independent of the channel memory length, due to high parallelism of its underlying Hopfield neural network structure. The superior complexity of the proposed equalizer allows it to equalize signals with hundreds of memory elements at a fraction of the computational cost of conventional optimal equalizer, which has complexity linear in the data block length but exponential in die channel memory length. The proposed equalizer is evaluated in extremely long sparse and dense Rayleigh fading channels for uncoded BPSK and 16-QAM-modulated systems and remarkable performance gains are achieved.