Resource allocation with EGOS constraint in multicell OFDMA communication systems: combating intercell interference

  • Authors:
  • Husheng Li

  • Affiliations:
  • Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking - Special issue on interference management in wireless communication systems: theory and applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Resource (power and bandwidth) allocation is an important issue in orthogonal frequency division multiple access (OFDMA) systems. For multicell systems, the interference across different cells makes the optimization of resource allocation difficult. For finite systems, a constraint on the rise over thermal (ROT) is placed to alleviate the intercell interference. A hybrid scheme with equal receive power and peak transmit power is shown to be optimal for the ROT constrained case. Large systemanalysis is applied for multi-cell OFDMA systems with the fairness constraint of equal grade of service (EGOS). An interference function is defined to model the intercell interference. Variational analysis is used to compute the optimal profile of transmit power and bandwidth. The optimal resource allocation is then computed using numerical simulations.