Transfer Learning on Heterogenous Feature Spaces via Spectral Transformation

  • Authors:
  • Xiaoxiao Shi;Qi Liu;Wei Fan;Philip S. Yu;Ruixin Zhu

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • ICDM '10 Proceedings of the 2010 IEEE International Conference on Data Mining
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Labeled examples are often expensive and time-consuming to obtain. One practically important problem is: can the labeled data from other related sources help predict the target task, even if they have (a) different feature spaces (e.g., image vs. text data), (b) different data distributions, and (c) different output spaces? This paper proposes a solution and discusses the conditions where this is possible and highly likely to produce better results. It works by first using spectral embedding to unify the different feature spaces of the target and source data sets, even when they have completely different feature spaces. The principle is to cast into an optimization objective that preserves the original structure of the data, while at the same time, maximizes the similarity between the two. Second, a judicious sample selection strategy is applied to select only those related source examples. At last, a Bayesian-based approach is applied to model the relationship between different output spaces. The three steps can bridge related heterogeneous sources in order to learn the target task. Among the 12 experiment data sets, for example, the images with wavelet-transformed-based features are used to predict another set of images whose features are constructed from color-histogram space. By using these extracted examples from heterogeneous sources, the models can reduce the error rate by as much as~50\%, compared with the methods using only the examples from the target task.