Making Human Connectome Faster: GPU Acceleration of Brain Network Analysis

  • Authors:
  • Di Wu;Tianji Wu;Yi Shan;Yu Wang;Yong He;Ningyi Xu;Huazhong Yang

  • Affiliations:
  • -;-;-;-;-;-;-

  • Venue:
  • ICPADS '10 Proceedings of the 2010 IEEE 16th International Conference on Parallel and Distributed Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The research on complex Brain Networks plays a vital role in understanding the connectivity patterns of the human brain and disease-related alterations. Recent studies have suggested a noninvasive way to model and analyze human brain networks by using multi-modal imaging and graph theoretical approaches. Both the construction and analysis of the Brain Networks require tremendous computation. As a result, most current studies of the Brain Networks are focused on a coarse scale based on Brain Regions. Networks on this scale usually consist around 100 nodes. The more accurate and meticulous voxel-base Brain Networks, on the other hand, may consist 20K to 100K nodes. In response to the difficulties of analyzing large-scale networks, we propose an acceleration framework for voxel-base Brain Network Analysis based on Graphics Processing Unit (GPU). Our GPU implementations of Brain Network construction and modularity achieve 24x and 80x speedup respectively, compared with single-core CPU. Our work makes the processing time affordable to analyze multiple large-scale Brain Networks.