Mutual information analyses of chaotic neurodynamics driven by neuron selection methods in synchronous exponential chaotic tabu search for quadratic assignment problems

  • Authors:
  • Tetsuo Kawamura;Yoshihiko Horio;Mikio Hasegawa

  • Affiliations:
  • Graduate School of Engineering, Tokyo Denki University, Tokyo, Japan;Graduate School of Engineering, Tokyo Denki University, Tokyo, Japan;Department of Electrical Engineering, Tokyo University of Science, Tokyo, Japan

  • Venue:
  • ICONIP'10 Proceedings of the 17th international conference on Neural information processing: theory and algorithms - Volume Part I
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The exponentially decaying tabu search, which exhibits high performance in solving quadratic assignment problems (QAPs), has been implemented on a neural network with chaotic neurodynamics. To exploit the inherent parallel processing capability of analog hardware systems, a synchronous updating scheme, in which all neurons in the network are updated simultaneously, has also been proposed. However, several neurons may fire simultaneously with the synchronous updating. As a result, we cannot determine only one candidate for the 2-opt exchange from among the many fired neurons. To solve this problem, several neuron selection methods, which select a specific neuron from among the fired neurons, have been devised. These neuron selection methods improved the performance of the synchronous updating scheme; however, the dynamics of the chaotic neural network driven by these heuristic algorithms cannot be intuitively understood. In this paper, we analyze the dynamics of a chaotic neural network driven by the neuron selection methods by considering the spatial and temporal mutual information.