Speeding up HOG and LBP features for pedestrian detection by multiresolution techniques

  • Authors:
  • Philip Geismann;Alois Knoll

  • Affiliations:
  • Robotics and Embedded Systems, Technische Universität München, Garching, Germany;Robotics and Embedded Systems, Technische Universität München, Garching, Germany

  • Venue:
  • ISVC'10 Proceedings of the 6th international conference on Advances in visual computing - Volume Part I
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this article, we present a fast pedestrian detection system for driving assistance. We use current state-of-the-art HOG and LBP features and combine them into a set of powerful classifiers. We propose an encoding scheme that enables LBP to be used efficiently with the integral image approach. This way, HOG and LBP block features can be computed in constant time, regardless of block position or scale. To further speed up the detection process, a coarse-to-fine scanning strategy based on input resolution is employed. The original camera resolution is consecutively downsampled and fed to different stage classifiers. Early stages in low resolutions reject most of the negative candidate regions, while few samples are passed through all stages and are evaluated by more complex features. Results presented on the INRIA set show competetive accuracy performance, while both processing and training time of our system outperforms current state-of-the-art work.