Reducing the maximum latency of selfish ring routing via pairwise cooperations

  • Authors:
  • Xujin Chen;Xiaodong Hu;Weidong Ma

  • Affiliations:
  • Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China;Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China;Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China

  • Venue:
  • COCOA'10 Proceedings of the 4th international conference on Combinatorial optimization and applications - Volume Part II
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper studies the selfish routing game in ring networks with a load-dependent linear latency on each link. We adopt the asymmetric atomic routing model. Each player selfishly chooses a route to connect his source-destination pair, aiming at a lowest latency of his route, while the system objective is to minimize the maximum latency among all routes of players. Such a routing game always has a Nash equilibrium (NE) that is a "stable state" among all players, from which no player has the incentive to deviate unilaterally. Furthermore, 16 is the current best upper bound on its price of anarchy (PoA), the worst-case ratio between the maximum latencies in a NE and in a system optimum. In this paper we show that the PoA is at most 10.16 provided cooperations within pairs of players are allowed, where any two players could change their routes simultaneously if neither would experience a longer latency and at least one would experience a shorter latency.