Fundamentals of LTE

  • Authors:
  • Arunabha Ghosh;Jun Zhang;Jeffrey G. Andrews;Rias Muhamed

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Fundamentals of LTE
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Definitive Guide to LTE Technology Long-Term Evolution (LTE) is the next step in the GSM evolutionary path beyond 3G technology, and it is strongly positioned to be the dominant global standard for 4G cellular networks. LTE also represents the first generation of cellular networks to be based on a flat IP architecture and is designed to seamlessly support a variety of different services, such as broadband data, voice, and multicast video. Its design incorporates many of the key innovations of digital communication, such as MIMO (multiple input multiple output) and OFDMA (orthogonal frequency division multiple access), that mandate new skills to plan, build, and deploy an LTE network. In Fundamentals of LTE, four leading experts from academia and industry explain the technical foundations of LTE in a tutorial style providing a comprehensive overview of the standards. Following the same approach that made their recent Fundamentals of WiMAX successful, the authors offer a complete framework for understanding and evaluating LTE. Topics includeCellular wireless history and evolution: Technical advances, market drivers, and foundational networking and communications technologiesMulticarrier modulation theory and practice: OFDM system design, peak-to-average power ratios, and SC-FDE solutionsFrequency Domain Multiple Access: OFDMA downlinks, SC-FDMA uplinks, resource allocation, and LTE-specific implementationMultiple antenna techniques and tradeoffs: spatial diversity, interference cancellation, spatial multiplexing, and multiuser/networked MIMOLTE standard overview: air interface protocol, channel structure, and physical layersDownlink and uplink transport channel processing: channel encoding, modulation mapping, Hybrid ARQ, multi-antenna processing, and morePhysical/MAC layer procedures and scheduling: channel-aware scheduling, closed/open-loop multi-antenna processing, and morePacket flow, radio resource, and mobility management: RLC, PDCP, RRM, and LTE radio access network mobility/handoff procedures