Equipment PHM using non-stationary segmental hidden semi-Markov model

  • Authors:
  • Ming Dong;Ying Peng

  • Affiliations:
  • College of Economics and Management, Shanghai Jiao Tong University, 535 Fahua Zhen Road, Shanghai 200052, PR China;School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China

  • Venue:
  • Robotics and Computer-Integrated Manufacturing
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Health monitoring and prognostics of equipment is a basic requirement for condition-based maintenance (CBM) in many application domains where safety, reliability, and availability of the systems are considered mission critical. As a key complement to CBM, prognostics and health management (PHM) is an approach to system life-cycle support that seeks to reduce/eliminate inspections and time-based maintenance through accurate monitoring, incipient faults. Conducting successful prognosis, however, is more difficult than conducting fault diagnosis. A much broader range of asset health related data, especially those related to the failures, shall be collected. The asset health progression can then be possibly extracted from the congregated data, which has proved to be very challenging. This paper presents a non-stationary segmental hidden semi-Markov model (NSHSMM) based prognosis method to predict equipment health. Unlike previous HSMMs, the proposed NSHSMM no longer assumes that the state-dependent transition probabilities keep the same value all the time. That is, the probability of transiting to a less healthy state does not increase with the age. ''Non-stationary'' means the transition probabilities will change with time. In the proposed method, in order to characterize a deteriorating equipment, three kinds of aging factor that discount the probabilities of staying at current state while increasing the probabilities of transitions to less healthy states are introduced. The performances of these aging factors are compared by using historical data colleted from three hydraulic pumps. The hazard function (h.f.) has been introduced to analyze the distribution of lifetime with a combination of historical failure data and on-line condition monitoring data. Using h.f., PHM is based on a failure rate that is a function of both the equipment age and the equipment conditions. The state values of the equipment condition considered in PHM, however, are limited to those stochastically increasing over time and those having non-decreasing effect on the hazard rate. The estimated state duration probability distributions can be used to predict the remaining useful life of the systems. With the equipment PHM, the behavior of the equipment condition can be predicted.