Stochastic networked computation

  • Authors:
  • Girish Vishnu Varatkar;Sriram Narayanan;Naresh R. Shanbhag;Douglas L. Jones

  • Affiliations:
  • Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL;Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL;Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL;Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, the stochastic networked computation (SNC) paradigm for designing robust and energy-efficient systems-on-a-chip in nanoscale process technologies, where robust computation is treated as a statistical estimation problem is presented. The benefits of SNC are demonstrated by employing it to design an energy-efficient and robust pseudonoise-code acquisition system for the wireless CDMA2000 standard (http://www.3gpp2.org). Simulations in IBM's 130-nm CMOS process show that the SNC-based architecture enhances the average probability of detection (PDet) in the presence of process variations by two to three orders of magnitude, reduces power by 31%-39%, and reduces the variation in (PDet) by one to two orders of magnitude at a typical false-alarm rate of 5% over a conventional architecture. SNC performance in the presence of voltage overscaling and across technology nodes (90, 65, 45, and 32 nm) is also studied.