A MIMO decoder accelerator for next generation wireless communications

  • Authors:
  • Karim Mohammed;Babak Daneshrad

  • Affiliations:
  • Cairo University, Giza, Egypt and University of California, Los Angeles, CA;University of California, Los Angeles, CA

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present a multi-input-multi-output (MIMO) decoder accelerator architecture that offers versatility and reprogrammability while maintaining a very high performance-cost metric. The accelerator is meant to address the MIMO decoding bottlenecks associated with the convergence of multiple high-speed wireless standards onto a single device. It is scalable in the number of antennas, bandwidth, modulation format, and most importantly, present and emerging decoder algorithms. It features a Harvard-like architecture with complex vector operands and a deeply pipelined fixed-point complex arithmetic processing unit. When implemented on a Xilinx Virtex-4 LX200FF1513 field-programmable gate array (FPGA), the design occupied 43% of overall FPGA resources. The accelerator shows an advantage of up to three orders of magnitude (1000 times) in power-delay product for typical MIMO decoding operations relative to a general purpose DSP. When compared to dedicated application-specific IC (ASIC) implementations of mmse MIMO decoders, the accelerator showed a degradation of 340%-17%, depending on the actual ASIC being considered. In order to optimize the design for both speed and area, specific challenges had to be overcome. These include: definition of the processing units and their interconnection; proper dynamic scaling of the signal; and memory partitioning and parallelism.