A highly-parallel TSP solver for a GPU computing platform

  • Authors:
  • Noriyuki Fujimoto;Shigeyoshi Tsutsui

  • Affiliations:
  • Osaka Prefecture University, Sakai-shi, Osaka, Japan;Hannan University, Matsubara, Osaka, Japan

  • Venue:
  • NMA'10 Proceedings of the 7th international conference on Numerical methods and applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The traveling salesman problem (TSP) is probably the most widely studied combinatorial optimization problem and has become a standard testbed for new algorithmic ideas. Recently the use of a GPU (Graphics Processing Unit) to accelerate non-graphics computations has attracted much attention due to its high performance and low cost. This paper presents a novel method to solve TSP with a GPU based on the CUDA architecture. The proposed method highly parallelizes a serial metaheuristic algorithm which is a genetic algorithm with the OX (order crossover) operator and the 2-opt local search. The experiments with an NVIDIA GeForce GTX285 GPU and a single core of 3.0 GHz Intel Core2 Duo E6850 CPU show that our GPU implementation is about up to 24.2 times faster than the corresponding CPU implementation.