Deterministic finite automata characterization and optimization for scalable pattern matching

  • Authors:
  • Lucas Vespa;Ning Weng

  • Affiliations:
  • Southern Illinois University Carbondale, Carbondale, IL;Southern Illinois University Carbondale, Carbondale, IL

  • Venue:
  • ACM Transactions on Architecture and Code Optimization (TACO)
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Memory-based Deterministic Finite Automata (DFA) are ideal for pattern matching in network intrusion detection systems due to their deterministic performance and ease of update of new patterns, however severe DFA memory requirements make it impractical to implement thousands of patterns. This article aims to understand the basic relationship between DFA characteristics and memory requirements, and to design a practical memory-based pattern matching engine. We present a methodology that consists of theoretical DFA characterization, encoding optimization, and implementation architecture. Results show the validity of the characterization metrics, effectiveness of the encoding techniques, and efficiency of the memory-based pattern engines.