Feature detection techniques for preprocessing proteomic data

  • Authors:
  • Kimberly F. Sellers;Jeffrey C. Miecznikowski

  • Affiliations:
  • Department of Mathematics and Statistics, Georgetown University, Washington, DC;Department of Biostatistics, University at Buffalo, Buffalo, NY and Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY

  • Venue:
  • Journal of Biomedical Imaging - Special issue on mathematical methods for images and surfaces
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Numerous gel-based and nongel-based technologies are used to detect protein changes potentially associated with disease. The raw data, however, are abundant with technical and structural complexities, making statistical analysis a difficult task. Low-level analysis issues (including normalization, background correction, gel and/or spectral alignment, feature detection, and image registration) are substantial problems that need to be addressed, because any large-level data analyses are contingent on appropriate and statistically sound low-level procedures. Feature detection approaches are particularly interesting due to the increased computational speed associated with subsequent calculations. Such summary data corresponding to image features provide a significant reduction in overall data size and structure while retaining key information. In this paper, we focus on recent advances in feature detection as a tool for preprocessing proteomic data. This work highlights existing and newly developed feature detection algorithms for proteomic datasets, particularly relating to time-of-flight mass spectrometry, and two-dimensional gel electrophoresis. Note, however, that the associated data structures (i.e., spectral data, and images containing spots) used as input for these methods are obtained via all gel-based and nongel-based methods discussed in this manuscript, and thus the discussed methods are likewise applicable.