Automating snakes for multiple objects detection

  • Authors:
  • Baidya Nath Saha;Nilanjan Ray;Hong Zhang

  • Affiliations:
  • Department of Computing Science, University of Alberta, Edmonton, Canada;Department of Computing Science, University of Alberta, Edmonton, Canada;Department of Computing Science, University of Alberta, Edmonton, Canada

  • Venue:
  • ACCV'10 Proceedings of the 10th Asian conference on Computer vision - Volume Part III
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Active contour or snake has emerged as an indispensable interactive image segmentation tool in many applications. However, snake fails to serve many significant image segmentation applications that require complete automation. Here, we present a novel technique to automate snake/active contour for multiple object detection. We first apply a probabilistic quad tree based approximate segmentation technique to find the regions of interest (ROI) in an image, evolve modifed GVF snakes within ROIs and finally classify the snakes into object and nonobject classes using boosting. We propose a novel loss function for boosting that is more robust to outliers concerning snake classification and we derive a modified Adaboost algorithm by minimizing the proposed loss function to achieve better classification results. Extensive experiments have been carried out on two datasets: one has importance in oil sand mining industry and the other one is significant in bio-medical engineering. Performances of proposed snake validation have been compared with competitive methods. Results show that proposed algorithm is computationally less expensive and can delineate objects up to 30% more accurately as well as precisely.