Meshless simulation of brittle fracture

  • Authors:
  • Ning Liu;Xiaowei He;Sheng Li;Guoping Wang

  • Affiliations:
  • Graphics and Interactive Technology Lab, Peking University, Beijing, China;Graphics and Interactive Technology Lab, Peking University, Beijing, China;Graphics and Interactive Technology Lab, Peking University, Beijing, China;Graphics and Interactive Technology Lab, Peking University, Beijing, China

  • Venue:
  • Computer Animation and Virtual Worlds
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a meshless method to simulate brittle fracture. For brittle solids, stress computation can be difficult because brittle materials generally require small timesteps which bring about heavy computational burden. Furthermore, treating the brittle objects as deformable bodies will cause inevitable visual artifact. We treat the brittle objects as fully rigid bodies and solve the brittle stress distribution with Meshless Local Petrov-Galerkin as a quasistatic problem, so visual artifact disppears and no timestep restriction exists. As a meshless framework, our method has the advantage of easy-resampling around high stress areas to improve computation accuracy. To generate fractured pieces, unlike previous methods which explicitly track the crack propagation, we also present a novel damage based model. Our model supports user-control of the fracture pattern which is especially useful when simulating anisotropic materials such as glass or wood. Results show that our meshless framework is physically feasible and user controllable. Copyright © 2011 John Wiley & Sons, Ltd.